Part Number Hot Search : 
AO442 L5983 2KBP08M A278R ICS874 N2231 0800049 LF200
Product Description
Full Text Search
 

To Download FAN8039D3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www.fairchildsemi.com
FAN8039D3
5-CH Motor Driver
Features
* * * * * * * 1 Phase, Full-wave, Linear DC Motor Driver Built-in 5-CH Balanced TransFormerless (BTL) Driver Built-in thermal shut down circuit (TSD) Built-in Variable Regulator With Power Tr. Built-in Power Save Circuit Built-in stand by mode circuit Wide Operating Supply Voltage : 4.5 ~ 13.2V
Description
The FAN8039D3 is a monolithic integrated circuit suitable for a 5-ch motor driver which drives the tracking actuator, focus actuator, sled motor, tray motor, spindle motor of the DVDP/CAR-CD systems.
28-SSOPH-375SG2
Typical Applications
* * * * * Compact disk player Video compact disk player Car compact disk player Mixing with compact disk player and mini disk player DVDP
Ordering Information
Device FAN8039D3 Package 28-SSOPH-375SG2 Operating Temp -35C ~ 85C -35C ~ 85C
FAN8039D3TF 28-SSOPH-375SG2
Rev 1.0.0
(c)2001 Fairchild Semiconductor Corporation
FAN8039D3
Pin Assignments
28
27
26
25
24
VCC
23
VREF
22
PS
21
VCC1
20
IN3
19
DO3+
18
17
16
15
GND3 DO4- DO4+ IN4
DO3- DO5- DO5+ GND2
FAN8039D3
DO1- DO1+ IN1 REGVCC REB REO RESX GND1 CTL FWD REV IN2 DO2+ DO2-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Pin Definitions
NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Symbol DO1DO1+ IN1 REGVCC REB REO RESX GND1 CTL FWD REV IN2 DO2+ DO2Description CH1 Drive Output (-) CH1 Drive Output (+) CH1 Drive Input Regulator Supply Voltage Regulator Output Regulator Feedback Input Regulator Reset Signal Ground CH5 Motor Speed Control CH5 Forward Input CH5 Reverse Input CH2 Drive Input CH2 Drive Output (+) CH2 Drive Output (-) NO 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Symbol GND2 DO5+ DO5DO3DO3+ IN3 VCC1 PS VREF VCC IN4 DO4+ DO4GND3 Description Power Ground1 (CH 2,3,5) CH5 Drive Output (+) CH5 Drive Output(-) CH3 Drive Output(-) CH3 Drive Output (+) CH3 Drive Input Supply Voltage1 Power Save Bias Voltage Supply Voltage CH4 Drive Input CH4 Drive Output (+) CH4 Drive Output (-) Power Ground2 (CH 1,4)
2
FAN8039D3
Internal Block Diagram
DO3-
DO5-
DO3+
DO5+
GND3
DO4-
DO4+
VREF
VCC1
28
27
2
26
2
25
IN4
24
23
22
21
20
19
18
17
16
10K PS RESX H L H L FUNCTION All Active Reg. Only Deactive Reg. Only Active All Deactive 10K
2
2
Level Shift 10K
H H L L
Level Shift
Level Shift
Regulator
2.5V 10K Level Shift
TSD
10K COMP
2
2
10K
GND2
VCC
IN3
FIN (GND)
PS
15
Level Shift
2
2
1
DO1-
2
DO1+
3
IN1
4
REGVCC
5
REB
6
REO
7
RESX FIN (GND)
8
GND1
9
CTL
10
FWD
11
REV
12
IN2
13
DO2+
14
DO2-
3
FAN8039D3
Equivalent Circuits
BTL DRVER OUTPUT BTL DRIVE INPUT
1 2
20K
3 12 20 25
25
13 14 16 17
30K
18 19
REGULATOR OUTPUT
REGULATOR FEEDBACK INPUT
6
1K 20K 25
5
REGULATOR RESET
MOTOR SPEED CONTROL
7
20K 50K 50K 25
9
1k 25
4
FAN8039D3
Equivalent Circuits (Continued)
FOWARD INPUT REVERSE INPUT
10
30K 30K 30K 30K 25
11
30K 30K 30K 30K 25
POWER SAVE
BIAS VOLTAGE
23
25 0.5K
22
25 50K 50K 20K
5
FAN8039D3
Absolute Maximum Ratings (Ta = 25C)
Parameter Maximum Supply Voltage Power Dissipation Operating Temperature Storge Temperature Maximum output current Regulator Maximum output current Symbol VCC PD TOPR TSTG IOMAX IROMAX Value 18 2.5note -35 ~ +85 -55 ~ +150 1 400 Unit V W C C A mA
Notes: 1. When mounted on 70mm x 70mm x 1.6mm PCB 2. Power dissipation reduces 20mW/C for using above TA = 25C 3. Do not exceed PD and SOA (Safe Operating Area)
Pd (mW) 3,000 2,000
1,000 0 0 25 50 75 100 125 150 175 Ambient temperature, Ta [C]
Recommended Operating Conditions (Ta = 25C)
Parameter Operating Supply Voltage Symbol VCC Min. 4.5 Typ. Max. 13.2 Unit V
6
FAN8039D3
Electrical Characteristics
(VCC = VCC1 = 8V, TA = 25C, unless otherwise specified) Characteristics Quiescent Circuit Current Power Save On Current Power Save On Voltage Power Save Off Voltage Load Regulation Line Regulation Symbol ICCQ IPS VPSON VPSOFF VRL VCC Pin7=GND Pin7=Variation Pin7=Variation IL = 0mA 200mA IL = 200mA, VCC=6V 9V IL = 100mA IL = 100mA Tj = 25C Condition Under no - load Min 2 -40 -20 4.75 3.135 Typ 20 1 0 0 5 3.3 700 Max 2 0.5 10 30 5.25 3.465 Unit mA mA V V mV mV V V mA
VARIABLE REGULATOR PART
Regulator Output Voltage 1 VREG1 Regulator Output Voltage 2 VREG2 *Regulator Output Peak Current BLT DRIVER PART Output Offset Voltage Maximum Output Voltage1 Maximum Output Voltage2 Close Loop Voltage Gain Slew rate Input High Level Voltage Input Low Level Voltage Output Voltage1 Output Voltage2 Output Offset Voltage1 Output Offset Voltage2 *.Pulse Testing with Low Duty. VOO VOM1 VOM2 AVF SR VIH VIL VO1 VO2 VOO1 VOO2 IPK
VIN=2.5V VCC=Vcc1=8V, RL = 12 VCC=Vcc1=13V, RL = 24 VIN=0V, 1Vrms, f = 1KHz VOUT=4VP-P, f = 120KHz, Square VCC=VCC1=8V, VCTL=OPEN, RL=12 VCC=VCC1=12V, VCTL=OPEN, RL=24 VIN=5V , 5V VIN=0V , 0V
-40 5.5 10.5 10.5 2 5.5 9.5 -40 -40
0 6.5 11.5 12 2 6.5 10.5 -
40 13.5 0.5 40 40
mV V V dB V/s V V V V mV mV
LOADING MOTOR DRIVER PART
7
FAN8039D3
Application Information
1. Driver (Except For Loading Motor Driver)
10K 10K 10K VREF
23 12 20
DO+
2 13 19 26
LEVEL SHIFT
10K
+ -
I
M
I 10K
1 14 18 27
3
25
0.1K
10K VCC 10K 10K 60K
DO-
62K
VP
The voltage, VREF is the reference voltage given by the external bias voltage of the pin #23. The input signal (VIN) through pin #12,20 is amplified by 10k/10k times and then fed to the level shift. The level shift produces the current due to the difference between the input signal and the arbitary reference signal. The current produced as + I and -I is fed into the driver Amp. The driver Amp. operates the power TR. of the output stage as the 2 times gain(1+10k/10k) according to the state of the input signal.
VV IN = V REF + VI = ---------10K 10K DO + = V P + I * 10K * 1 + ---------- = V P + 2V 10K 10K DO - = V P - I * 10K * 1 + ---------- = V P - 2V 10K V OUT = ( DO+ ) - ( DO- ) = 4V V OUT GAIN = 20 log -------------- = 12dB V
If it is desired to change the gain, then the pin #3 or 25 can be used. The output stage is the balanced transformerless (BTL) driver. The bias voltage VP is expressed as
62K V P = ( VCC - V BE - V CE ( SAT ) ) x --------------------------- + V CE ( SAT ) 60K + 62K VCC - V BE - V CE ( SAT ) = ------------------------------------------------------------ + V CE ( SAT ) 1.97
8
FAN8039D3
2. Thermal Shutdown
When the chip temperature reaches to 175C, then the TSD circuit is activated. This shuts down the bias current of the output drivers, and all the output drivers are in cut-off state. Thus the chip temperature begins to decrease. when the chip temperature falls to 150C, the TSD circuit is deactivated and the output drivers are normally operated. The TSD circuit has the hysteresis temperature of 25C.
Hysteresis VCC IREF R1 Q0 R2 Ihys R3 Output driver bias
3. Power Save Function
When the pin22 is high, the TR Q3 is turned on and Q4 is off, so the bias circuit is enabled. On the other hand, when the pin22 is Low (GND) , the TR Q3 is turned off and Q4 is on, so the bias circuit is disabled. That is, this function will cause all the circuit blocks of the chip except for the variable regulator to be in the off state. thus the low power quiescent state is established Truth table is as follows; Pin#22 High Low FAN8039D3 Power Save Off Power Save On
VCC
Main Bias (except for variable reg.) Q4
22 Q3
4. Variable Regulator
The VREF is the output voltage of the referenced biasing circuit and is the reference voltage of the regulator. (VREF=2.5V) The external circuit is composed of a capacitor, 33uF, which is used as a ripple eliminator The output voltage, VOUT is decided as follows.
R1 V OUT = V REF * 1 + ------ = 2.5 x 2 = 5V ( R1 = R2 ) R
2 REGVCC
IMAX
R3 VREF 2.5V Q1 5 V OUT 4
Resistor R3 should be used, it can reduce the heating problem of regulator output TR Q1. R3 value is decided as follows
( REGVCC - ( Vout + 1.5 ) ) R3 = ---------------------------------------------------------------------I MAX
7 RESX
R1 6 R2 33uF
9
FAN8039D3
5. Loading Motor Driver
DO2+ 13
M
DO214
D
D
LEVEL SHIFT
CTL 9
M.S.C
S.W
IN
IN
FWD 10
REV 11
* Rotational direction control The forward and reverse rotational direction is controlled by FWD (pin10) and REV (pin11) and the input conditions are as follows. INPUT FWD H H L L REV H L H L OUT 1 Vp H L OUTPUT OUT 2 Vp L H State High Impedence Forward Reverse Short Brake
* Where Vp(Power reference voltage) is approximately about 3.75V at VCC1,VCC = 8V * Motor speed control (When VCC=VCC1=8V) - The almost maximum torque is obtained when the pin 9,(CTL) is open. - If the voltage of the pin 9,(CTL) is 0V, the motor will not operate.
10
FAN8039D3
Typical Performance Characteristics
Temp vs Ips 1. 5 1. 3 1. 1 Ips(mA) 0. 7 0. 5 0. 3 0. 1 -0.1 -35 -10 15 40 Temp() 65 Avf(dB) 0. 9 16 14 12 10 8 6 4 2 0 -35 Temp vs Avf
Vcc1=8V Vcc=8V
Vcc=8V Vcc1=8V Vin=1kHz
-10 15 40 65 Temp()
Temp vs V rl 10 0 -10 -20 -30 -40 -35 Vcc(mV) Vrl(mV) 10 0 -10 -20 -30 -40 -50 -35 -10
Temp vs V cc
Vcc=8V Vcc1=8V IL=0~200mA
-10 15 40 65 Temp()
IL=200mA Vcc=5~9V
15 40 65 Temp()
Temp vs V Reg1 5. 25 5. 15 Reg1(V) 5. 05 4. 95 4. 85 4. 75 -35
Vcc=8V Vcc1=8V IL=100mA
-10 15 40 65 Temp()
11
FAN8039D3
Typical Performance Characteristics
V cc vs Icc 35 30 25 Icc(mA) 20 15 10 5 0 4.5 5.5 6.5 7.5 8.5 9.5 V cc(V ) Vom(V) 14 12 10 8 6 4 2
V cc vs V om
No Load
10.5 11.5 12.5
0 4.5 5.5 6.5 7.5 8.5 V cc(V )
Vcc=8V Vcc1=8V RL=12V
9.5 10.5 11.5 12.5
V cc vs Avf 13.5 13 Avf(dB) Vreg(V) 12.5 12 11.5 11 10.5 4.5 6.5 8.5 V cc(V ) 10.5 5.5 5 4.5 4 3.5 3 4 5 6
V cc vs V reg
Vcc=8V Vcc1=8V RL=12
12.5
Vcc=8V Vcc1=8V IL=100mA
7 8 9 10 11 12 13 V cc(V )
Temp vs Icc 30 25 Icc(mA) Vom(V) 20 15 10 5 0 -35 7 6 5 4 3 2 1 0 -35 -10
Temp vs V om
No Load
-10 15 40 65 Temp()
Vcc=8V Vcc1=8V RL=12
15 40 65 Temp()
12
FAN8039D3
Test Circuit
VCC
12
24 1
2 3 + 100uF 1 SW7
2 3 1
12
24
12
24
1 SW9
2
SW8 10K
2.5V
104
2
1 SW5
2
SW6
28
27
26
25
24
VCC
23
VREF
22
PS
21
VCC1
20
IN3
19
18
17
16
15
GND3 DO4- DO4+ IN4
DO3+ DO3- DO5- DO5+ GND2
FAN8039D3
DO1- DO1+ IN1 REGVCC REB REO RESX GND1 CTL FWD REV IN2 DO2+ DO2-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SW1 1 2
10K SW2 1 3 2 + 33uF SW3 1 2 3
SW4 1 2
12
24
12
24
13
FAN8039D3
Application Circuit
SERVO PRE-AMP
SPINDLE TRACKING BIAS SLED FOCUS REVERSE
CONTROLLER
FORWARD CONTROL
VCC
M
SLED
LOADING MOTOR
M
TRACK
P S
100uF 102
28
27
26
25
24
23
22
21
20
19
18
17
16
15
GND3 DO4- DO4+ IN4
VCC VREF PS
VCC1 IN3
DO3+ DO3- DO5- DO5+ GND2
FAN8039D3
DO1- DO1+ IN1 REGVCC REB
REO RESX
GND1 CTL FWD
REV IN2 11 12
DO2+ DO213 14
1
2
3
4
5
Reg out
6
7
8
9
10
M
33uF
SPINDLE
R E S X
FOCUS
14
FAN8039D3
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
www.fairchildsemi.com 4/28/01 0.0m 001 Stock#DSxxxxxxxx 2001 Fairchild Semiconductor Corporation
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


▲Up To Search▲   

 
Price & Availability of FAN8039D3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X